With 3+2-axis machining, also called positional 5-axis machining, the cutting tool moves across three linear axes (X, Y and Z) and can tilt to different angles along two rotational axes (A or B, plus C). By contrast, simultaneous 5-axis machining, also called true 5-axis machining, moves both the cutting tool and the workpiece along X, Y, Z, as well as A/B and C axes simultaneously.
3+2-axis machining has the advantages of reducing setups, avoiding collisions and using shorter, more rigid tools without the level of complex CNC software and hardware programming that simultaneous 5-axis machining requires. However, simultaneous 5-axis machining can achieve more complex organic shapes and contours, as well as reduce machining time and waste.