Stroke Parameterization

Ryan Schmidt

Computer Graphics Forum (Eurographics Proceedings)
2013

Stroke Parameterization (4:20 min.)

Abstract

We present a novel algorithm for generating a planar parameterization of the region surrounding a curve embedded in a 3D surface, which we call a stroke parameterization. The technique, which extends the well-known Discrete Exponential Map [SGW06], uses the same basic geometric transformations and hence is both efficient and easy-to-implement. We also handle self-intersecting curves, for which a 1-1 map between the original surface and the plane is not possible. Stroke parameterizations provide an ideal coordinate space for solving a variety of computer graphics problems. We present applications including tiling texture and displacement along 3D brush strokes, procedural texturing along 3D paths, and user-guided crease extraction.

Related Publications

Loading...

Related Projects

  • Mesh Processing

    Computer representations of geometry are at the core of most problems in digital design and fabrication. In the context of our tools research we explore novel approaches to geometry processing.

Welcome ${RESELLERNAME} Customers

Please opt-in to receive reseller support

I agree that Autodesk may share my name and email address with ${RESELLERNAME} so that ${RESELLERNAME} may provide installation support and send me marketing communications.  I understand that the Reseller will be the party responsible for how this data will be used and managed.

Email is required Entered email is invalid.

${RESELLERNAME}