Worldwide Sites

You have been detected as being from . Where applicable, you can see country-specific product information, offers, and pricing.

Change country/language X

  • United States

    We have redirected you to an equivalent page on your local site where you can see local pricing and promotions and purchase online.

    Stay on our U.S. site

Keyboard ALT + g to toggle grid overlay

JOIN: an integrated platform for joint simulation of occupant-building interactions

Davide Schaumann, Seonghyeon Moon, Muhammad Usman, Rhys Goldstein, Simon Breslav, Azam Khan, Petros Faloutsos, Mubbasir Kapadia

Architectural Science Review
2019

Join Platform (3:43 min.)

Video title (x:xx min.)

Abstract

Several approaches exist for simulating building properties (e.g. temperature, noise) and human occupancy (e.g. movement, actions) in an isolated fashion, providing limited ability to represent how environmental features affect human behaviour and vice versa. To systematically model building-occupant interactions, several requirements must be met, including the modelling of (a) interdependent multi-domain phenomena ranging from temperature and sound changes to human movement, (b) high-level occupant planning and low-level steering behaviours, (c) environmental and occupancy phenomena that unfold at different time scales, and (d) multiple strategies to represent occupancy using established models. In this work, we propose an integrated platform that satisfies the aforementioned requirements thus enabling the joint simulation of building-occupant interactions. To this end, we combine the benefits of a model-independent, discrete-event, general-purpose framework with an established crowd simulator . Our platform provides insights on a building’s performance while accounting for alternative design features and modelling strategies.

Related Publications

Related Projects

Building Simulation

Buildings are the largest consumers of energy responsible for 48% of all Green House Gas (GHG) emissions. Due to the complexity and multidisciplinary aspects of architectural design, construction, urban design, and building occupant behavior, simulation has gained attention as a means of addressing this enormous challenge. The idea is to model a building’s many interacting subsystems, including its occupants, electrical equipment, and indoor and outdoor climate. With simulation results in hand, an architect is better able to predict the energy demand associated with various designs, and choose from among the more sustainable options.

Heading

Descriptive text. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt magna aliqua in reprehenderit.

Heading

Descriptive text. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt magna aliqua in reprehenderit.