Efficient Geometrically Exact Continuous Collision Detection

Tyson Brochu, Essex Edwards, Robert Bridson

ACM Transactions on Graphics (SIGGRAPH Proceedings)
2012

Abstract

Continuous collision detection (CCD) between deforming triangle mesh elements in 3D is a critical tool for many applications. The standard method involving a cubic polynomial solver is vulnerable to rounding error, requiring the use of ad hoc tolerances, and nevertheless is particularly fragile in (near-)planar cases. Even with per-simulation tuning, it may still cause problems by missing collisions or erroneously flagging non-collisions. We present a geometrically exact alternative guaranteed to produce the correct Boolean result (significant collision or not) as if calculated with exact arithmetic, even in degenerate scenarios. Our critical insight is that only the parity of the number of collisions is needed for robust simula- tion, and this parity can be calculated with simpler non-constructive predicates. In essence we analyze the roots of the nonlinear system of equations defining CCD through careful consideration of the boundary of the parameter domain. The use of new conservative culling and interval filters allows typical simulations to run as fast as with the non-robust version, but without need for tuning or worries about failure cases even in geometrically degenerate scenarios. We demonstrate the effectiveness of geometrically exact detection with a novel adaptive cloth simulation, the first to guar- antee to remain intersection-free despite frequent curvature-driven remeshing.

Related Publications

Loading...

Welcome ${RESELLERNAME} Customers

Please opt-in to receive reseller support

I agree that Autodesk may share my name and email address with ${RESELLERNAME} so that ${RESELLERNAME} may provide installation support and send me marketing communications.  I understand that the Reseller will be the party responsible for how this data will be used and managed.

Email is required Entered email is invalid.

${RESELLERNAME}