Worldwide Sites

You have been detected as being from . Where applicable, you can see country-specific product information, offers, and pricing.

Change country/language X

Keyboard ALT + g to toggle grid overlay

Dirichlet energy for analysis and synthesis of soft maps

J. Solomon, L. Guibas, Adrian Butscher

Eurographics/ACMSIGGRAPH Symposium on Geometry Processing
2013

Abstract

Soft maps taking points on one surface to probability distributions on another are attractive for representing surface mappings in the presence of symmetry, ambiguity, and combinatorial complexity. Few techniques, however, are available to measure their continuity and other properties. To this end, we introduce a novel Dirichlet energy for soft maps generalizing the classical map Dirichlet energy, which measures distortion by computing how soft maps transport probabilistic mass from one distribution to another. We formulate the computation of the Dirichlet energy in terms of a differential equation and provide a finite elements discretization that enables all of the quantities introduced to be computed efficiently. We demonstrate the effectiveness of our framework for understanding soft maps arising from various sources. Furthermore, we suggest how these energies can be applied to generate continuous soft or point-to-point maps.

Related Publications

Related Projects

Heading

Descriptive text. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt magna aliqua in reprehenderit.

Heading

Descriptive text. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt magna aliqua in reprehenderit.

Heading

Descriptive text. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt magna aliqua in reprehenderit.