Worldwide Sites

You have been detected as being from . Where applicable, you can see country-specific product information, offers, and pricing.

Change country/language X

Keyboard ALT + g to toggle grid overlay

Deformations of minimal Lagrangian submanifolds with boundary

Proceedings of the American Mathematical Society
2003

Abstract

Let L be a special Lagrangian submanifold of a compact Calabi-Yau manifold M with boundary lying on the symplectic, codimension 2 submanifold W. It is shown how deformations of L which keep the boundary of L confined to W can be described by an elliptic boundary value problem, and two results about minimal Lagrangian submanifolds with boundary are derived using this fact. The first is that the space of minimal Lagrangian submanifolds near L with boundary on W is found to be finite dimensional and is parametrized over the space of harmonic 1-forms of L satisfying Neumann boundary conditions. The second is that if W' is a symplectic, codimension 2 submanifold sufficiently near W, then, under suitable conditions, there exists a minimal Lagrangian submanifold L' near L with boundary on W'.

Related Publications

Related Projects

Heading

Descriptive text. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt magna aliqua in reprehenderit.

Heading

Descriptive text. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt magna aliqua in reprehenderit.

Heading

Descriptive text. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt magna aliqua in reprehenderit.