Deformations of minimal Lagrangian submanifolds with boundary

Proceedings of the American Mathematical Society


Let L be a special Lagrangian submanifold of a compact Calabi-Yau manifold M with boundary lying on the symplectic, codimension 2 submanifold W. It is shown how deformations of L which keep the boundary of L confined to W can be described by an elliptic boundary value problem, and two results about minimal Lagrangian submanifolds with boundary are derived using this fact. The first is that the space of minimal Lagrangian submanifolds near L with boundary on W is found to be finite dimensional and is parametrized over the space of harmonic 1-forms of L satisfying Neumann boundary conditions. The second is that if W' is a symplectic, codimension 2 submanifold sufficiently near W, then, under suitable conditions, there exists a minimal Lagrangian submanifold L' near L with boundary on W'.

Related Publications


Welcome ${RESELLERNAME} Customers

Please opt-in to receive reseller support

I agree that Autodesk may share my name and email address with ${RESELLERNAME} so that ${RESELLERNAME} may provide installation support and send me marketing communications.  I understand that the Reseller will be the party responsible for how this data will be used and managed.

Email is required Entered email is invalid.