Unsupervised Image to Sequence Translation with Canvas-Drawer Networks

Kevin Frans, Chin-Yi Cheng

arXiv.org
2018

Abstract

Encoding images as a series of high-level constructs, such as brush strokes or discrete shapes, can often be key to both human and machine understanding. In many cases, however, data is only available in pixel form. We present a method for generating images directly in a high-level domain (e.g. brush strokes), without the need for real pairwise data. Specifically, we train a ”canvas” network to imitate the mapping of high-level constructs to pixels, followed by a high-level ”drawing” network which is optimized through this mapping towards solving a desired image recreation or translation task. We successfully discover sequential vector representations of symbols, large sketches, and 3D objects, utilizing only pixel data. We display applications of our method in image segmentation, and present several ablation studies comparing various configurations.

Related Publications

Loading...

Welcome ${RESELLERNAME} Customers

Please opt-in to receive reseller support

I agree that Autodesk may share my name and email address with ${RESELLERNAME} so that ${RESELLERNAME} may provide installation support and send me marketing communications.  I understand that the Reseller will be the party responsible for how this data will be used and managed.

Email is required Entered email is invalid.

${RESELLERNAME}