Worldwide Sites

You have been detected as being from . Where applicable, you can see country-specific product information, offers, and pricing.

Change country/language X


Simulation tools for plastic injection molding

Moldflow® software provides tools for injection mold design, plastic part design, and the injection molding process. Moldflow, part of the Digital Prototyping solution, helps you avoid potential manufacturing defects and get innovative products to market faster.


Desktop Subscription for Moldflow Flex gives you access to the latest updates and releases, 1-on-1 web support, priority support in the forums, flexible licensing, as well as local and cloud solving options for additional capacity.

Page view:

    Injection molding

  • Surface defect traceability New

    Visualize the flow path of polymer to identify conditions that could result in surface defects on the part. Identify which gate fluid particles entered, how far they traveled before freezing, and the path taken through complex geometry.

  • Induction heating New

    Simulate the rapid heating of magnetic components within the mold via electromagnetic induction to achieve a high-quality surface finish with no visible weld lines.

  • Controlled valve gate opening New

    Achieve higher quality surface finishes with velocity controlled valve gate opening and closing combined with sequential valve gating. Predict the effects of slowly opening valve gates to avoid hesitation effects and surface defects.

  • Thermoplastics injection molding

    Simulate and evaluate your entire design and molding process by evaluating process and design variables using a vast database of thermoplastic materials and wide range of analysis results. Moldflow software tools help you simulate and optimize the thermoplastics injection molding process for your application.

  • Shrinkage and warpage

    Simulate the warpage of the manufactured part to help ensure the end product's fit and function. Generate accurately compensated models for tooling or further geometry modification. In cases of excessive shrinkage and warpage, it's easy to isolate the underlying cause of the warpage (differential shrinkage in the part, mold cooling imbalances, or material orientation) so you can evaluate targeted actions and alternatives to address the issue. The Moldflow database contains grade-specific data to support the highest level of predictive accuracy.

  • Mold cooling

    Capture advanced cooling techniques and layouts, such as conformal cooling, as well as transient heat calculations. Iterate on the cooling channel layout and the cooling process to produce high-quality products with short cycle time. Simulate advanced cooling technologies, like rapid heating and cooling and conformal cooling. Evaluate the effect of highly conductive materials, as well as heating elements and thermal pins, on the cycle time and product quality.

  • Best gate location

    Reduce or eliminate many production problems and defects by selecting the correct gate location. For more complex designs, use the Moldflow Gating Suitability Analysis for advice on a range of gate locations to find your optimal gate locations. The way molten plastic polymer flows through a mold can significantly affect the overall quality of a part. Use the Fill Preview tool to experiment with different gate locations to preview how the mold will fill.

  • Fiber orientation

    Calculate and evaluate the fiber orientation, manufactured shape, and structural properties of your part. You can also export fiber orientation and mechanical results to an external structural analysis package to further investigate the strength of the finished part.

  • Thermoplastics and thermosets

    Compare different plastic material properties and recommended molding and processing conditions, regardless of your selected materials. Thermoplastics and thermosets are the 2 primary types of plastics used in manufacturing. They have distinctive properties and are well suited for differing applications.

  • Molding defects

    Simulate how parts are filled early in the design process to reduce molding defects, retooling, and redesign. Identify where defects will occur and how you can change your design or molding conditions to reduce or eliminate them.

  • Manufactured material properties (FEA)

    Perform structural analysis tests to verify critical loads. The injection molding process influences the structural properties of the product (such as weld lines, fiber orientation, and material orientation). If the product has a critical load case to meet, then you can perform a structural analysis test within the injection molding process to include in the analysis.

  • Defect visualization

    Simulate the injection molding process to understand how the part geometry, the location of the injection points, and the molding process affect visual defects—like the position of weld lines and the visibility of sink marks—as part shrinkage and warpage. Optimize the position of the injection points, the part geometry, and the molding process to minimize defects in highly visible areas. The position and depth of sink marks can be exported in .fbx format, so you can evaluate them in detail in products like Showcase and VRED software.

  • From art to part

    Moldflow helps you imagine, design, and create your entire molding process using Moldflow Design, Moldflow Adviser, and Moldflow Insight software. Moldflow products provide the tools you need to transform your design concepts into produced parts.

  • Two-shot sequential overmolding

    Simulate the process of 2 sequential injections (or materials), visualize the impact on their relative behavior, and analyze the overmolding process. In two-shot sequential overmolding, different colored versions of the same material or 2 entirely different materials are injected into the mold to provide multiple colors or different materials within the same part. Use the software to assess warpage, relative temperature distributions of the materials, and the effect of plastic or metal inserts.

  • Birefringence

    Use Moldflow software to reduce optical quality issues, such as blurring or double images. Many factors influence birefringence, including the material, mold design, and molding conditions. Predict optical performance issues in plastics.

  • One-directional core shifts

    Simulate one-directional core deflection on parts with inserts. See pressure differential around the core that could lead to core deflection, and use one-sided constraint to help with your analysis.

    Validation optimization

  • Export results to structural package New

    Use Advanced Material Exchange to transfer Moldflow data to Helius PFA projects for detailed composite structural analysis. Map material properties and fiber orientations from your Moldflow simulation to a structural package. Helius PFA uses the results to predict material nonlinearity and structural response. Exporting "as-manufactured" simulation data from Moldflow enables a more realistic structural verification of your injection molded part early in the design cycle.

  • Runner balancing

    Verify multicavity and family molds fill at the same time and pressure. The runner balancing process optimizes the runner diameter for each segment to balance filling and pressure distributions across all the cavities in the mold.

  • Design of Experiments

    Understand the stability of your manufacturing process and identify the major factors that influence your product defects or machine molding limits. Use DOE analysis to determine which input process variables, such as mold temperature or injection time, can influence the quality of the part.

  • Parametric Study

    Run a series of analyses to investigate and optimize the molding process based on your defined quality parameters. Use the Parametric Study to change 1 or more molding parameters by a specified amount. Then, visualize the effect of the parameter change on the part quality. This provides an intuitive way to understand the molding parameters that can help you achieve your quality goals.

    Manufacturing process

  • 3D microcellular injection molding New

    Perform microcellular injection molding simulation with 3D meshes. A fitted classical bubble nucleation model has also been added for all mesh types as an additional calculation option to the default constant nucleation density model.

  • Gas-assist injection molding

    Simulate the gas-assisted injection molding process to improve gas entrance position, delay time, pressure profile, and packing time so you can achieve optimal gas penetration.

  • Lightweight manufacturing validation

    Validate the manufacturing process for lightweight component manufacturing. Determine whether your components can be manufactured and meet dimensional as well as functional specifications. Moldflow software provides the highest level of information and accuracy to evaluate the manufacturing process of a lightweight plastic component. 

  • Compression and injection compression molding with 3D

    Create quality parts for specific applications that conventional injection molding cannot address. Use compression molding to produce very large parts that are otherwise hard to mold. Rely on injection compression molding for low-stress, smaller parts, such as plastic lenses.

  • Orthotropic part inserts

    Simulate continuous fiber inserts made from composite materials or wood and analyze any overmolded part defects. In the automotive industry, for example, anisotropic materials, such as wood or continuous fiber composites, can be overmolded, and the simulation will show the final deformation of the overmolded part.

  • Bi-injection molding simulation

    Simulate the injection of 2 materials into 1 cavity during a single molding cycle to determine the relative distribution and location of both materials. These materials can be different, or the same material with different colorants. Create decorative parts with a soft boundary between the 2 colors, and determine if the part meets the required specifications. Simulate the fill patterns to achieve the desired volume, distribution, and relative weights of the 2 materials.

  • Microchip encapsulation

    Simulate the encapsulation process of microchips. Observe the mold filling and curing process of the resin, and account for the deformation of the bonding wires, as well as the lead frame, due to the filling process.

    User efficiency

  • SimStudio Tools for Moldflow New

    Quickly simplify and edit your geometry for simulation in Moldflow. SimStudio Tools reads in multiple CAD file formats and helps you quickly simplify models, eliminate unnecessary detail, and perform basic repair. Easily make design changes so you can explore various design ideas faster.

  • Refined user experience New

    Several user requested enhancements have been added to the ribbon, layer manager, and project manager to improve productivity during pre- and post-processing. 

  • Improved results interpretation New

    Several new results have been added and existing results have been enhanced to provide more insight into analysis results.

  • Meshing productivity New

    Create, repair, and refine meshes easily with new capabilities for mesh selection, node preview during remeshing, and usability improvements for the diagnostic navigator.

  • Cloud Service

    Flexible cloud solving options

    Use Moldflow Flex to solve locally or solve in the cloud while you continue working. Simulate where and how you want, based on your needs. If you're testing the setup of an analysis, use your local resources to iterate and optimize your setup. When you're ready to initiate a longer, more computationally intensive simulation, use the power of the cloud and free up your local resources for other tasks.

  • Fast and easy use

    Simulation Moldflow processing is fast and accurate, and includes real-time, dynamic Adviser wizards to help you make the best design choices.

  • Meshing flexibility

    You have several options for how to best represent the product. Large, thin-walled parts are best represented using Midplane and the patented Moldflow Dual Domain technology, while chunkier parts are best represented with a 3D mesh.

  • Material databases

    Use extensive material databases for injection molding simulation to help you choose your materials more accurately. Several included databases include characteristics of thermoplastic polymers, as well as other parameters, such as coolants, mold materials, and injection molding machines. The databases update continuously and include more than 9,500 plastics characterized for injection molding simulation.

  • Simultaneous solving

    Moldflow Insight Premium and Moldflow Insight Ultimate solvers enable you to run up to 3 analyses simultaneously, so you can analyze several results at the same time. In addition, your team can increase productivity by having up to 3 people run their analyses in unison.

  • Automatic Programming Interface (API)

    Streamline your simulation process and create custom tools to reduce repetitive sets of tasks or build customized workflows.

  • Analysis reports

    Easily generate, share, and communicate your Moldflow analysis results with your internal and external project team members and collaborators. Use the report generator tool to create template reports in HTML, Microsoft Word, and Microsoft PowerPoint that you can personalize with notes, images, and animations. Send the study files to import or project files to open, or select the results you want to share and export them as a Moldflow results file.

  • Integration with Simulation products

    Moldflow software integrates with many other Autodesk products, such as Simulation MechanicalCFD, Showcase, VRED, Vault PDM, and SimStudio Tools software.

  • Interoperability

    Import native CAD models, CAD translations, and neutral files directly into Moldflow software, no matter which CAD system was used to create them. You can also import meshes from different FEA tools, then export analysis results for further use in structural analysis programs. Use multiple native files for design optimization.